如图,在的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.
从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为
以(1)中的AB为边的一个等腰ABC,使点C在格点上,且另两边的长都是无理数(画出一个符合条件的三角形即可)
画出(2)中△ABC关于点B的中心对称图形△A1BC1.
如图,经过原点的抛物线与
轴的另一个交点为A.过点
作直线
轴于点M,交抛物线于点B,过点B作直线BC∥
轴与抛物线交于点C(B、C不重合),连结CP.
(1)当时,求点A的坐标及BC的长;
(2)当时,连结CA,问
为何值时
?
(3)过点P作且
,问是否存在
,使得点E落在坐标轴上?若存在,求出所有满足要求的
的值,并求出相对应的点E坐标;若不存在,请说明理由.
如图:在⊙O中,经过⊙O内一点P有一条弦AB,且AP=4,PB=3,过P点另有一动弦CD,连结AC,DB.设CP=x,PD=y.
(1)求证:△ACP∽△DBP;
(2)求y关于x的函数解析式;
(3)若CD=8时,求S△ACP:S△DBP的值.
已知二次函数,
是不为0的常数.
(1)除0以外,不论取何值时,这个二次函数的图像一定会经过两个定点,请你求出这两个定点;
(2)如果该二次函数的顶点不在直线的右侧,求
的取值范围.
已知在正方形的网格中,网线的交点称为格点,如图,点A、B、C都是格点.每个小正方形的边长为1个单位长度,若在网格中建立坐标系,则A的坐标为(-1,3),B的坐标为(1,3),C的坐标为(3,1).
(1)利用正方形网格,作过A、B、C三点的圆,并写出圆心O的坐标;
(2)在(1)中所作的⊙O外,在这8×8的网格中找到一个格点P,作△PAC,使得△PAC的面积与△ABC的面积相等,并写出点P的坐标.(写出一个即可)
如图,函数y1=k1x+b的图象与函数(x>0)的图象交于A、B两点,与y轴交于C点.已知A点的坐标为(2,1),C点的坐标为(0,3).
(1)求函数y1的表达式和B点坐标;
(2)观察图象,比较当x>0时,y1和y2的大小.