某房地产开发公司计划建A、B两种户型的住房共80套,已知该公司所筹集的资金不少于2090万元,但不超过2096万元,且所筹集资金全部用于建房,两种户型的建房成本和售价如下表:
户型 |
A |
B |
成本(万元/套) |
25 |
28 |
售价(万元/套) |
30 |
34 |
(1)试求该公司对这两种户型住房将有哪几种建房方案;
(2)试问该公司将如何建房,才能使获得的利润最大;
(3)若根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(),且所建的两种住房可全部售出.试问该公司又将如何建房,才能使获得的利润最大。(注:利润=售价-成本)
(·湖南株洲)已知抛物线的表达式为
(1)若抛物线与轴有交点,求
的取值范围;
(2)设抛物线与轴两个交点的横坐标分别为
、
,若
,求
的值;
(3)若P、Q是抛物线上位于第一象限的不同两点,PA、QB都垂直于轴,垂足分别为A、B,且△OPA与△OQB全等,求证:
(·湖南益阳)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.
(1)求m的值及抛物线E2所表示的二次函数的表达式;
(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.
(·湖南长沙)若关于x的二次函数y=a+bx+c(a>0,c>0,a、b、c是常数)与x轴交于两个不同的点A(
,0),B(
,0)(0<
<
),与y轴交于点P,其图像顶点为点M,点O为坐标原点。
(1)当=c=2,a=
时,求
与b的值;
(2)当=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;
(3)当=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值。
|
(·湖南常德)如图,曲线抛物线的一部分,且表达式为:
曲线
与曲线
关于直线
对称。
(1)求A、B、C三点的坐标和曲线的表达式;
(2)过点D作轴交曲线
于点D,连接AD,在曲线
上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标。
(3)设直线CM与轴交于点N,试问在线段MN下方的曲线
上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由。
(·湖北孝感)在平面直角坐标系中,抛物线与
轴交于点
,
,与
轴交于点
,直线
经过
,
两点.
(1)求抛物线的解析式;
(2)在上方的抛物线上有一动点
.
①如图1,当点运动到某位置时,以
为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点
的坐标;
②如图2,过点,
的直线
交
于点
,若
,求
的值.