(·湖北孝感)在平面直角坐标系中,抛物线与
轴交于点
,
,与
轴交于点
,直线
经过
,
两点.
(1)求抛物线的解析式;
(2)在上方的抛物线上有一动点
.
①如图1,当点运动到某位置时,以
为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点
的坐标;
②如图2,过点,
的直线
交
于点
,若
,求
的值.
如图,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.求证:四边形ABCE是平行四边形.
如图,四边形ABCD为等腰梯形,AD∥BC,连接AC、BD,在平面内将△DBC沿BC翻折得到△EBC.
(1)四边形ABEC一定是什么四边形?
(2)证明你在(1)中所得出的结论.
如图,在□ABCD中,M、N分别是AD,BC的中点,连接AN,CM.求证:△ABN≌△CDM.
如图,在Rt△ABC中,∠ACB=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连接DE.
(1)证明:DE∥CB;
(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.
如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.