如图,从椭圆
上一点
向
轴作垂线,恰好通过椭圆的左焦点
,且它的长轴端点
及短轴端点
的连线
平行于
,
(1)求椭圆的离心率;
(2)设是椭圆上任意一点,
是右焦点,求
的取值范围;
(3)设是椭圆上一点,当
时,延长
与椭圆交于另一点
,若
的面积为
,求此时的椭圆方程。
设,其中
,
已知满足
(1)求函数的单调递增区间;
(2)求不等式的解集.
设函数其中
(1)若=0,求
的单调区间
(2)设表示
与
两个数中的最大值,求证:当0≤x≤1时,|
|≤
.
已知椭圆的左右焦点为
,抛物线C:
以
为焦点且与椭圆相交于点
、
,点
在
轴上方,直线
与抛物线
相切.
(1)求抛物线的方程和点
、
的坐标;
(2)设A,B是抛物线C上两动点,如果直线,
与
轴分别交于点
.
是以
,
为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.
已知等差数列中,
,前
项和为
且满足条件:
(1)求数列的通项公式;
(2)若数列的前
项和为
有
,
,又
,求数列
的前
项和
.
如图,已知中,
,
,
,
,
交
于
,
为
上点,且
,将
沿
折起,使平面
平面
(1)求证:∥平面
;
(2)求三棱锥的体积