已知椭圆的左右焦点为
,抛物线C:
以
为焦点且与椭圆相交于点
、
,点
在
轴上方,直线
与抛物线
相切.
(1)求抛物线的方程和点
、
的坐标;
(2)设A,B是抛物线C上两动点,如果直线,
与
轴分别交于点
.
是以
,
为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.
某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.
(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;
(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求
的分布列和数学期望.
设数列的前n项和为
,满足
,且
.
(Ⅰ)求的通项公式;
(Ⅱ)若成等差数列,求证:
成等差数列.
选修4-5:不等式选讲
已知函数
(Ⅰ)a=-3时,求不等式 的解集;
(Ⅱ)若关于x的不等式 恒成立,求实数a的取值范围
选修4-4:坐标系与参数方程
己知抛物线的顶点M到直线
(t为参数)的距离为1
(1)求m;
(2)若直线与抛物线相交于A,B两点,与y轴交于N点,求
的值.
选修4-1:几何证明选讲
如图,是
的一条切线,切点为
,直线
,
,
都是
的割线,已知
.
(1)求证:;
(2)若,
.求
的值.