(本小题满分12分)
某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本。对高一年级的100名学生的成绩进行统计,并按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分组,得到成绩分布的频率分布直方图(如图)。
(Ⅰ)若规定60分以上(包括60分)为合格,计算高一年级这次知识
赛的合格率;
(Ⅱ)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下 面2×2列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”。
|
高一 |
高二 |
合计 |
合格人数 |
|
|
|
不合格人数 |
|
|
|
合计 |
|
|
|
参考数据与公式:
由列联表中数据计算
临界值表
P(K≥k0) |
0.10 |
0.05 |
0.010 |
k0 |
2.706 |
3.841 |
6.635 |
已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系,直线L的参数方程是
(t是参数).
(1)将曲线C的极坐标方程和直线L参数方程转化为普通方程;
(2)若直线L与曲线C相交于M、N两点,且,求实数m的值.
如图⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于点N,过点N的切线交CA的延长线于P.
(1)求证:;
(2)若⊙O的半径为,OA=
OM,求MN的长.
设函数在
内有极值.
(1)求实数的取值范围;
(2)若求证:
.
设椭圆C:的离心率
,右焦点到直线
1的距离
,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
某网站体育版块足球栏目组发起了“射手的连续进球与射手在场上的区域位置有关系”的调查活动,在所有参与调查的人中,持“有关系”“无关系”“不知道”态度的人数如表所示:
有关系 |
无关系 |
不知道 |
|
40岁以下 |
800 |
450 |
200 |
40岁以上(含40岁) |
100 |
150 |
300 |
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持有关系态度的人中抽取45人,求n的值.
(2)在持“不知道”态度的人中,用分层抽样的方法抽取10人看作一个总体.①从这10人中选取3人,求至少一人在40岁以下的概率;②从这10人中人选取3人,若设40岁以下的人数为X,求X的分布列和数学期望.