已知椭圆的离心率
,短轴长为
(Ⅰ)求椭圆方程;
(Ⅱ)若椭圆与轴正半轴、
轴正半轴的交点分别为
、
,经过点
且斜率k的直线
与椭圆交于不同的两点
、
,是否存在常数
,使得向量
共线?如果存在,求
的值;如果不存在,请说明理由。
已知
是首项为19,公差为-2的等差数列,
为
的前
项和.
(Ⅰ)求通项
及
;
(Ⅱ)设
是首项为1,公比为3的等比数列,求数列
的通项公式及其前
项和
.
在数列中,
,且对任意
.
,
,
成等差数列,其公差为
。
(Ⅰ)若=
,证明
,
,
成等比数列(
)
(Ⅱ)若对任意,
,
,
成等比数列,其公比为
。
如图,在长方体中,
、
分别是棱
,
上的点,,
(1)求异面直线与
所成角的余弦值;
(2)证明平面
(3)求二面角的正弦值。
已知函数
(Ⅰ)求函数的最小正周期及在区间
上的最大值和最小值;
(Ⅱ)若,求
的值。
已知函数
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)已知函数的图象与函数
的图象关于直线
对称,证明当
时,
(Ⅲ)如果,且
,证明