(本小题满分12分)
已知函数
,且函数
的最小正周期
为
(1)若
,求函数
的单调递减区间;
(2)将函数
的图象上各点的纵坐标保持不变,横坐标缩短到原来的
,把所得到的图象再向左平移
个单位,得到函数
的图象,求函数
在区间
上的最小值。
(本小题共9分)
已知函数f(x)=
。
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)判断函数f(x)的奇偶性,并证明;
(Ⅲ)判断函数f(x)在定义域上的单调性,并用定义证明。
(本小题共9分)
已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R
(Ⅰ)求A∪B,(C
A)∩B;
(Ⅱ)若A∩C≠
,求a的取值范围。
已知
在点(1,f(1))处的切线方程为
。
(1)求f(x)的表达式;
(2)若f(x)满足
恒成立,则称f(x)为g(x)的一个“上界函数”,如果f(x)为
的一个“上界函数”,求t的取值范围;
(3)当m>0时讨论
在区间(0,2)上极值点的个数。
设Sn为数列{an}为前n项和,对任意的
都有
(m为常数且m>0)
(1)求证:{an}为等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足
,求数列{bn}的通项公式;
(3)在(2)的条件下,求数列
的前n项和Tn。
已知函数f(x)和g(x)的图象关于原点对称,且
(1)求函数g(x)的解析式;
(2)解不等式
;
(3)若
在[-1,1]上是增函数,求实数
的取值范围。