(本小题满分12分)一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.求:
(Ⅰ)恰好摸到2个“心”字球的概率;
(Ⅱ)摸球次数的概率分布列和数学期望.
已知,
,
(1)若与
垂直,求
的值;
(2)若,求
的值.
已知为椭圆
上两动点,
分别为其左右焦点,直线
过点
,且不垂直于
轴,
的周长为
,且椭圆的短轴长为
.
(1)求椭圆的标准方程;
(2)已知点为椭圆
的左端点,连接
并延长交直线
于点
.求证:直线
过定点.
已知函数.
(1)若函数在
时取得极值,求实数
的值;
(2)若对任意
恒成立,求实数
的取值范围.
某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交
元的管理费,预计当每件产品的售价为
元(
)时,一年的销售量为
万件.
(1)求该分公司一年的利润(万元)与每件产品的售价
的函数关系式;
(2)当每件产品的售价为多少元时,该分公司一年的利润最大?并求出
的最大值.
已知抛物线过点
.
(1)求抛物线的方程,并求其准线方程;
(2)过焦点且斜率为
的直线
与抛物线交于
两点,求
的面积.