设数列是有穷等差数列,给出下面数表:
……
第1行
……
第2行
… … …
… …
… 第行
上表共有行,其中第1行的
个数为
,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为
.
(1)求证:数列成等比数列;
(2)若,求和
.
(本小题满分13分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度
是车流密度
的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:
辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
(本小题满分13分)已知数列满足
,其中
N*.
(Ⅰ)设,求证:数列
是等差数列,并求出
的通项公式
;
(Ⅱ)设,数列
的前
项和为
,是否存在正整数
,使得
于
N*恒成立,若存在,求出
的最小值,若不存在,请说明
(本小题满分12分)如图,在底面为菱形的四棱锥中,
,
为
的中点,
,
(1)求证:平面
(2)求与面
所成角的正弦值
(本小题满分12分)已知二次函数,若
,且对任意实数
均有
成立,设
(1)当时,
为单调函数,求实数
的范围
(2)当时,
恒成立,求实数
的范围.
(本小题满分12分)已知向量,
=
,函数
,
(1)求函数f(x)的解析式及其单调递增区间;
(2)当x∈时,求函数f(x)的值域.