让我们一起来探索平面直角坐标系中平行四边形的顶点的坐标之间的关系。
第一步:数轴上两点连线的中点表示的数
自己画一个数轴,如果点A、B分别表示-2、4,则线段AB的中点M表示的数是 。 再试几个,我们发现:
数轴上连结两点的线段的中点所表示的数是这两点所表示数的平均数。
第二步;平面直角坐标系中两点连线的中点的坐标(如图①)
为便于探索,我们在第一象限内取两点A(x1,y1),B(x2,y2),取线段AB的中点M,分别作A、B到x轴的垂线段AE、BF,取EF的中点N,则MN是梯形AEFB的中位线,故MN⊥x轴,利用第一步的结论及梯形中位线的性质,我们可以得到点M的坐标是( , )(用x1,y1,x2,y2表示),AEFB是矩形时也可以。我们的结论是:平面直角坐标系中连结两点的线段的中点的横(纵)坐标等于这两点的横(纵)坐标的平均数。
图① 图②
第三步:平面直角坐标系中平行四边形的顶点坐标之间的关系(如图②)
在平面直角坐标系中画一个平行四边形ABCD,设A(x1,y1),B(x2,y2),C(x3,y3),
D(x4,y4),则其对角线交点Q的坐标可以表示为Q( , ),也可以表示为Q( , ),经过比较,我们可以分别得出关于x1,x2,x3,x4及,y1,y2,y3,y4的两个等式是 和 。 我们的结论是:平面直角坐标系中平行四边形的对角顶点的横(纵)坐标的 。
如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=DE,那么AC与CE有什么关系?写出你的猜想并说明理由。
观察下面的式子:,
,
,
,
,
,
,
,
……
(1)猜一猜等于什么?
(1)猜一猜等于什么?
(2)写出的值.
如图,直线AC∥DF,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他有没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF。
以下是他的想法,请你填上根据。小华是这样想的:
因为CF和BE相交于点O,
根据得出∠COB=∠EOF;
而O是CF的中点,那么CO=FO,又已知 EO=BO,
根据得出△COB≌△FOE,
根据得出BC=EF,
根据得出∠BCO=∠F,
既然∠BCO=∠F,根据出AB∥DF,
既然AB∥DF,根据得出∠ACE和∠DEC互补.
化简求值:.
阅读理解:
方程ax2+bx+c=0(a≠0)的根是x=.
方程y2+by+ac=0的根是y=.
因此,要求ax2+bx+c=0(a≠0)的根,只要求出方程y2+by+ac=0的根,再除以a就可以了.
举例:解方程72x2+8x+=0.
解:先解方程y2+8y+72×=0,得y1=﹣2,y2=﹣6.
∴方程72x2+8x+=0的两根是x1=
,x2=
.
即x1=﹣,x2=﹣
.
请按上述阅读理解中所提供的方法解方程49x2+6x﹣=0.