(本小题12分)一个盒子中装有张卡片,每张卡片上写有
个数字,数字分别是
、
、
、
。现从盒子中随机抽取卡片,
⑴若一次抽取张卡片,求
张卡片上数字之和大于
的概率;
⑵若第一次抽张卡片,放回后再抽取
张卡片,求两次抽取中至少一次抽到数字
的概率。
(本小题满分16分)已知函数.
(Ⅰ)当时,求证:函数
在
上单调递增;
(Ⅱ)若函数有三个零点,求
的值;
(Ⅲ)若存在,使得
,试求
的取值范围.
(本小题满分16分)已知数列是以
为公差的等差数列,数列
是以
为公比的等比数列.
(Ⅰ)若数列的前
项和为
,且
,
,求整数
的值;
(Ⅱ)在(Ⅰ)的条件下,试问数列中是否存在一项
,使得
恰好可以表示为该数列中连续
项的和?请说明理由;
(Ⅲ)若(其中
,且(
)是(
)的约数),
求证:数列中每一项都是数列
中的项.
(本小题满分16分)已知⊙和点
.
(Ⅰ)过点向⊙
引切线
,求直线
的方程;
(Ⅱ)求以点为圆心,且被直线
截得的弦长4的⊙
的方程;
(Ⅲ)设为(Ⅱ)中⊙
上任一点,过点
向⊙
引切线,切点为Q. 试探究:平面内是否存在一定点
,使得
为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.
已知点(1,)是函数
且
)的图象上一点,等比数列
的前
项和为
,数列
的首项为
,且前
项和
满足
-
=
+
(
).
(1)求数列和
的通项公式;
(2)若数列{前
项和为
,问
>
的最小正整数
是多少? .
设,
(1)令,讨论
在(0.+∞)内的单调性并求极值;
(2)求证:当时,恒有
。