(本题满分14分) 设等差数列{an}的首项a1为a,公差d=2,
前n项和为Sn.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
某厂家举行大型的促销活动,经测算某产品当促销费用为万元时,销售量
万件满足
(其中
,
为正常数). 现假定生产量与销售量相等,已知生产该产品
万件还需投入成本
万元(不含促销费用),产品的销售价格定为
万元/万件.
(1)将该产品的利润万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
∈R,解关于
的不等式
≥
(
).
已知等差数列前三项的和为
,前三项的积为
.
(Ⅰ)求等差数列的通项公式;
(Ⅱ)若,
,
成等比数列,求数列
的前
项和.
已知p:,q:
(1)若a=,且
为真,求实数x的取值范围.
(2)若p是q的充分不必要条件,求实数a的取值范围.
在△ABC中,角A,B,C所对的边分别是a,b,c.已知(b-2a)cosC+c cosB=0.
(1)求C;
(2)若c=,b=3a,求△ABC的面积.