(本小题13分)
已知等比数列满足
,且
是
,
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,
,求使
成立的正整数
的最小值.
在△中,角
、
、
所对的边分别为
、
、
,且
.
(1)求的值;
(2)若,
,求
的值.
如图,已知椭圆的方程为
,双曲线
的两条渐近线为
、
.过椭圆
的右焦点
作直线
,使
,又
与
交于点
,设
与椭圆
的两个交点由上至下依次为
、
.
(1)若与
的夹角为
,且双曲线的焦距为
,求椭圆
的方程;
(2)求的最大值.
设函数,
.
(1)若曲线与
在它们的交点
处有相同的切线,求实数
、
的值;
(2)当时,若函数
在区间
内恰有两个零点,求实数
的取值范围;
(3)当,
时,求函数
在区间
上的最小值.
已知数列{an}满足,
,
.
(1)求证:数列为等比数列;
(2)是否存在互不相等的正整数、
、
,使
、
、
成等差数列,且
、
、
成等比数列?如果存在,求出所有符合条件的
、
、
;如果不存在,请说明理由.
在如图的几何体中,平面为正方形,平面
为等腰梯形,
,
,
,
.
(1)求证:平面
;
(2)求直线与平面
所成角的正弦值.