(本题满分14分) 某中学为了解学生的睡眠情况与学习效率的关系,从中抽取20名学生作为样本进行调查.调查的数据整理分组如下表示:
睡眠时间(单位:小时) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
频 数 |
1 |
3 |
|
6 |
4 |
|
频 率 |
|
|
0.20 |
|
|
|
(1)将以上表格补充完整,
(2)在给定的坐标系内画出样本的频率分布直方图;
(3)为了比较睡眠情况与学习效率的关系,现从睡眠时间在与
个小时的学生中抽取2人,问能在这两个睡眠时间内各抽到1个学生的概率是多少?
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点是
的中点。
(I)求证:;
(II)求证://平面
.
已知命题:实数
满足
,命题
:实数
满足方程
表示焦点在
轴上的椭圆,且非
是非
的充分不必要条件,求
的取值范围。
已知椭圆C的左、右焦点坐标分别是,
,离心率是
,直线y=t与 椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P。
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值。
设是坐标平面上的一列圆,它们的圆心都在
轴的正半轴上,且都与直线
相切,对每一个正整数
,圆
都与圆
相互外切,以
表示
的半径,已知
为递增数列.
(Ⅰ)证明:为等比数列;
(Ⅱ)设,求数列
的前
项和.
已知实数a满足1<a≤2,设函数f (x)=x3-
x2+ax.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于等于10.