(本小题满分15分)已知直线l的方程为:,直线l与x轴的交点为F, 圆O的方程为:
,C、 D在圆上, CF⊥DF,设线段CD的中点为M.
(1)如果CFDG为平行四边形,求动点G的轨迹;
(2)已知椭圆的中心在原点,右焦点为F,直线l交椭圆于A、B两点,又,
求椭圆C的方程.
高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中
间的矩形的高;
(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在
之间的概率.
函数(
)的部分图像如右所示.
(1)求函数的解析式;
(2)设,且
,求
的值.
动圆M过定点A(-,0),且与定圆A´:(x-
)2+y2=12相切.
(1)求动圆圆心M的轨迹C的方程;
(2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求的取值范围.
已知函数.
(1)求在区间
上的最大值;
(2)若函数在区间
上存在递减区间,求实数m的取值范围.
已知命题:方程
无实根,命题
:方程
是焦点在
轴上的椭圆.若
与
同时为假命题,求
的取值范围.