做图:在△ABC中,
,
.
(1)将△
向右平移4个单位长度,画出平移后的△
;
(2)画出△
关于
轴对称的△
;
(3)将△
绕原点O旋转180º,画出旋转后的△
;
(4)在△
.△
.△
中,
△ 与△ 成轴对称,对称轴是 ;
△ 与△ 成中心对称,对称中心的坐标是
如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若,求大圆与小圆围成的圆环的面积.(结果保留π)
某单位于“五一”期间组织职工到龙岩漳平“九鹏溪”观光旅游.下面是领队与旅行社导游收费标准的一段对话:
领队:组团去“九鹏溪”旅游每人收费是多少?
导游:如果人数不超过25人,人均旅游费用为100元.
领队:超过25人怎样优惠呢?
导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团浏览“九鹏溪”结束后,共支付给旅行社2700元。
请你根据上述信息,求该单位这次到“九鹏溪”观光旅游的共有多少人?
关于三角函数有如下的公式:
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:
根据上面的知识,你可以选择适当的公式解决下面实际问题:
如图所示,直升机在一建筑物CD上方A点处测得建筑物顶端D点的俯角为
,底端C点的俯角
为
,此时直长机与建筑物CD的水平距离BC为42米,求建筑物CD的高。
先化简,再求值:,其中
是不等式组
的整数解
如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)求这条抛物线的解析式;
(2)设D(m,n),矩形ABCD的周长为l,写出l与m的关系式,并求出l的最大值;
(3)点E在抛物线的对称轴上,在抛物线上是否还存在点F,使得以E、F、O、M为顶点的四边形是平行四边形?如果存在,写出F点的坐标.