(满分10分)
求证:.
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) |
2 |
3 |
4 |
5 |
加工的时间y(小时) |
2.5 |
3 |
4 |
4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
(注:)
甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和
,求(1)恰有1人译出密码的概率;
(2)若达到译出密码的概率为,至少需要多少个乙这样的人?
从4名男生,3名女生中选出三名代表。
(1)不同的选法共有多少种?
(2)至少有一名女生的不同的选法共有多少种?
(3)代表中男、女生都要有的不同的选法共有多少种?
在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面积等于,求a、b;
(Ⅱ)若,求△ABC的面积.
已知函数f(x)=sin(ωx+φ) (0<φ<π,ω>0)过点
,函数y=f(x)图象的两相邻对称轴间的距离为
.
(1) 求f(x)的解析式;
(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.