为发展“低碳经济”,某单位进行技术革新, 让可再生资源重新利用. 从今年1月1日开始,该单位每月再生资源处理量y(吨)与月份x之间成如下一次函数关系:
月份x |
1 |
2 |
再生资源处理量y(吨) |
40 |
50 |
月处理成本z(元)与每月再生资源处理量y(吨)之间的函数关系可近似地表示为:
z =,每处理一吨再生资源得到的新产品的售价定为100元.
该单位哪个月获得利润最大?最大是多少?
随着人们环保意识的增加,该单位需求的可再生资源数量受限。今年三、四月份的再生资源处理量都比二月份减少了m% ,该新产品的产量也随之减少,其售价都比二月份的售价增加了0.6m%.五月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20% .如果该单位在保持三月份的再生资源处理量和新产品售价的基础上,其利润是二月份的利润的一样,求m .( m保留整数) (
如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm.点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s.当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB'F,设点E,F,G运动的时间为t(单位:s).
(1)当t= s时,四边形EBFB'为正方形;
(2)若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;
(3)是否存在实数t,使得点B'与点O重合?若存在,求出t的值;若不存在,请说明理由.
如图,在Rt△ABC中,∠ACB=900,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.
(1)求证:BD=BF;
(2)若CF=1,cosB=,求⊙O的半径.
如图,∴P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长BP交边AD于点F,交CD的延长线于点G.
(1)求证:△APB≌△APD;
(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.
①求y与x的函数关系式;
②当x=6时,求线段FG的长.
如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西600的方向,从B测得小船在北偏东450的方向.
(1)求点P到海岸线l的距离;
(2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处.此时,从B测得小船在北偏西150的方向.求点C与点B之间的距离.
(上述2小题的结果都保留根号)
如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.
(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是 (只需要填一个三角形);
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).