如图,一次函数的图象与反比例函数
的
图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y
轴于点B.一次函数的图象分别交轴、
轴于点C、D,
且S△PBD=4,.
求点D的坐标;
求一次函数与反比例函数的解析式;
根据图象写出在第一象限内一次函数的值小于反比例函数的值的
的取值范围.
已知m是方程的一个实数根,求代数式
的值.
为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
如图,在△ABC中,AB=CB,∠ABC=900,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
①求证:△ABE≌△CBD;
②若∠CAE=300,求∠BDC的度数.
解不等式组,并指出它的所有非负整数解.
如图1所示,已知直线与x轴、y轴分别交于A、C两点,抛物线
经过A、C两点,点B是抛物线与x轴的另一个交点,当
时,y取最大值
.
(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且,求点P的坐标;
(3)若直线与(1)中所求的抛物线交于M、N两点,问:
①是否存在a的值,使得∠MON=900?若存在,求出a的值;若不存在,请说明理由;
②猜想当∠MON>900时,a的取值范围(不写过程,直接写结论).
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为)