如图,已知中的两条角平分线
和
相交于
,
,
在
上,且
。
(1)证明:四点共圆;
(2)证明:平分
。
如图,已知矩形所在平面外一点
,
平面
,
分别是
的中点,
.
(1)求证:平面
(2)若,求直线
与平面
所成角的正弦值.
某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,则该顾客在3次抽奖中至多有两次获得一等奖的概率.
某城市户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,
,
,
的四组用户中,用分层抽样的方法抽取
户居民,则月平均用电量在
的用户中应抽取多少户?
已知△的内角
所对的边分别为
且
.
(1)若,求
的值;
(2)若△的面积
求
的值.
如图,在三棱柱中,
,
,
,
在底面ABC的射影为BC的中点,D为
的中点.
(1)证明:;
(2)求直线和平面
所成的角的正弦值.