游客
题文

如图,平面直角坐标系中,⊙轴相切于点,与轴相交于点两点,连结

求证
若点的坐标为,直接写出点的坐标
在(2)的条件下,过两点作⊙轴的正半轴交于点,与的延长线交于点,当⊙的大小变化时,给出下列两个结论:
① 的值不变;②的值不变;
其中有且只有一个结论是正确的,请你判断哪一个结论正确,证明正确的结论并求出其值

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

解方程:
x﹣
解:去分母,得6x﹣3x+1=4﹣2x+4…①
即﹣3x+1=﹣2x+8…②
移项,得﹣3x+2x=8﹣1…③
合并同类项,得﹣x=7…④
∴x=﹣7…⑤
上述解方程的过程中,是否有错误?答: 有 ;如果有错误,则错在 ① 步.如果上述解方程有错误,请你给出正确的解题过程.

(本题9分)
如图,在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),C(0,-1)三点.
 (1)求该抛物线的表达式;
(2)点Q在y轴上,点P在抛物线上,要使以点Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.

(本题9分)
体育课上,老师训练学生的项目是投篮,假设一名同学投篮后,篮球运行的轨迹是一段抛物线,将所得轨迹形成的抛物线放在如图所示的坐标系中,得到解析式为y=-x2x+3.3(单位:m).请你根据所得的解析式,回答下列问题:
 (1)球在空中运行的最大高度为多少米?
  (2)如果一名学生跳投时,球出手离地面的高度为2.25m,,请问他距篮球筐中心的水平距离是多少?

(本题9分)
已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5,试问:k取何值时,△ABC是以BC为斜边的直角三角形?

(本题8分)
将二次函数y=2x2-8x-5的图象沿它的对称轴所在直线向上平移,得到一条新的抛物线,这条新的抛物线与直线y=kx+1有一个交点为(3,4).
 求:(1)新抛物线的解析式及后的值;
  (2)新抛物线与y=kx+1的另一个交点的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号