如图,正方形的面积为9,点
为坐标原点,点
在函数
的图象上,点
是函数
的图象上任意一点,边点
分别作
轴、
轴的垂线,垂足分别为
、
,并设矩形
和正方形
不重合部分的面积为S.
⑴求
点的坐标和
的值;
⑵当
时,求
点的坐标;
⑶写出
关于
的函数关系式.
如图,在直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B两点,且△ABO的面积为12.(1)求k的值;
(2)若P为直线AB上一动点,P点运动到什么位置时,△PAO是以OA为底的等腰三角形,求点P的坐标;
(3)在(2)的条件下,连结PO,△PBO是等腰三角形吗?如果是,试说明理由,如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为(时),两车之间的距离为
(千米),图中的折线表示从两车出发至快车到达乙地过程中
与
之间的函数关系.
(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;
(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中
关于
的函数的大致图象.
.某蒜薹生产基地喜获丰收收蒜薹200吨。经市场调查,可采用批发、零售、冷库储藏后销售,并按这三种方式销售,计划每吨的售价及成本如下表:
销售方式 |
批发 |
零售 |
冷库储藏后销售 |
售价(元/吨) |
3000 |
4500 |
5500 |
成本(元/吨) |
700 |
1000 |
1200 |
(1)若经过一段时间,蒜薹按计划全部售出后获得利润为y(元)蒜薹x(吨),且零售是批发量的
求y与x之间的函数关系;
(2)由于受条件限制经冷库储藏的蒜薹最多80吨,求该生产基地计划全部售完蒜薹获得最大利润。
如图,已知A(n,-2),B(1,4)是一次函数的图象和反比例函数y=
的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOB的面积;
(3)求不等式
的解集(直接写出答案).