(本小题满分12分)从2003年开始,我国就通过实施高校自主招生探索人才选拔制度改革,允许部分高校拿出一定比例的招生名额,选拔那些有特殊才能的学生。某学生参加一个高校的自主招生考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为、
,两题全部答对方可进入面试。面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为
,至少答对一题即可被录取。(假设每个环节的每个问题回答正确与否是相对独立的)
(I)求该学生被学校录取的概率;
(II)设该学生答对题目的个数为ξ,求ξ的分布列和数学期望。
(本题满分12分)
已知矩阵的某个列向量的模不大于行列式
的值,求实数
的取值范围
(本题满分18分,第(1)题4分、第(2)题8分、第(3)题6分)
已知二次曲线的方程:
.
(1)分别求出方程表示椭圆和双曲线的条件;
(2)对于点,是否存在曲线
交直线
于
、
两点,使得
?若存在,求出
的值;若不存在,说明理由;
(3)已知与直线
有公共点,求其中实轴最长的双曲线方程.
. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)
已知公差大于零的等差数列的前
项和为
,且满足
,
,
(1)求数列的通项公式;
(2)若数列是等差数列,且
,求非零常数
;
(3)若(2)中的的前
项和为
,求证:
.
(本题满分14分,第1小题满分4分,第2小题满分4分,第3小题满分6分)
设函数,
(1)求的反函数
;
(2)判断的单调性,不必证明;
(3)令,当
,
时,
在
上的值域是
,求
的取值范围.
. (本题满分14分,第1小题满分6分,第2小题满分8分)
已知向量,
,
(1)当时,求
的值;
(2)求的最大值与最小值.