(1)画图,已知线段a和锐角∠α,求作Rt△ABC,使它的一边为a,一锐角为∠α(不写作法,要保留作图痕迹,作出其中一个满足条件的直角三角形即可).
(2)回答问题:①满足上述条件的大小不同的共有多少种.
②若∠α=30°,求最大的Rt△ABC的面积.
如图,AE、AH分别为△ABC的角平分线和高,∠B=∠BAC,∠C=30°,求∠BAE、∠HAE的度数.
已知方程组与
有相同的解,求m2-2mn+n2的值
化简(本题6分)
(1)
(2)
已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.
(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=.
(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴
翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3
中补全小贝同学翻折后的图形;②请你根据①中的图形,求出m的取值范围,并简要说明理
由.