游客
题文

(本小题满分15分) 已知抛物线C的顶点在原点, 焦点为F(0,1).
(1) 求抛物线C的方程;
(2)在抛物线C上是否存在点P, 使得过点P
的直线交C于另一点Q,满足PFQF, 且
PQ与C在点P处的切线垂直.若存在,求出
P的坐标; 若不存在,请说明理由.

科目 数学   题型 解答题   难度 容易
知识点: 参数方程
登录免费查看答案和解析
相关试题

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:

其中直径在区间[1.48,1.52]内的零件为一等品。
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率。

(本小题满分12分)
ABC中,
(Ⅰ)证明B=C:
(Ⅱ)若=-,求sin的值。

已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0).
(i)若,求直线l的倾斜角;
(ii)若点Q在线段AB的垂直平分线上,且.求的值.

已知函数f(x)=,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=错误!不能通过编辑域代码创建对象。,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;
(Ⅱ)证明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号