(2011贵州毕节,26,12分)小明到一家批发兼零售的文具店给九年级学生购买考试用2B铅笔,请根据下列情景解决问题。
![]() |
售货员 小明
(1) 这个学校九年级学生总数在什么范围内?(4分)
(2) 若按批发价购买6支与按零售价购买5支的所付款相同,那么这个学校九年级学生有多少人?(8分)
袋中装有大小相同的2个红球和2个绿球(1) 先从袋中摸出1个球后放回,混合均匀后再摸出1个球.① 求第一次摸到绿球,第二次摸到红球的概率 (请直接写出结果)② 求两次摸到的球中有1个绿球和1个红球的概率
(请直接写出结果)(2) 先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率
是多少?(请用画出树形图或列表法求出结果)
如图,在⊙O中,,点D、E分别在半径OA和OB上,AD=BE.求证:CD=CE.
已知:写成
的形式,
求出图像与
轴的交点,
直接写出原抛物线与
轴翻折后图像的解析式为____________________________.
解方程:
对称轴为直线的抛物线y=x2 + bx + c, 与
轴相交于A 、B,两点,其中点A的坐标为(
3,0).
(1)求点的坐标.
(2)点是抛物线与
轴的交点,点
是线段
上的动点,作
轴交抛物线于点
,求线段
长度的最大值.