(本小题满分14分) 已知数列的前n项和Sn=9-6n.
(1)求数列的通项公式.
(2)设,求数列
的前n项和.
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行
四边形,DC平面ABC ,
,已知AE与平面ABC所成的角为
,
且
.
(1)证明:平面ACD平面
;
(2)记,
表示三棱锥A-CBE的体积,求
的表达式;
(3)当取得最大值时,求二面角D-AB-C的大小.
某射击运动员为争取获得2010年广州亚运会的参赛资格正在加紧训练.已知在某次训练中他射击了枪,每一枪的射击结果相互独立,每枪成绩不低于10环的概率为
,设
为本次训练中成绩不低于10环的射击次数,
的数学期望
,方差
.
(1)求的值;
(2)训练中教练要求:若有5枪或5枪以上成绩低于10环,则需要补射,求该运动员在本次训练中需要补射的概率.
(结果用分数表示.已知:,
)
设向量,
,
.
(1)若,求
的值;
(2)设,求函数
的值域.
(1)若,求函数
的极值;
(2)若是函数
的一个极值点,试求出
关于
的关系式(用
表示
),并确定
的单调区间;
(3)在(2)的条件下,设,函数
.若存在
使得
成立,求
的取值范围.
已知数列和
满足
,
,
.
(1)求数列的通项公式;
(2)设,求使得
对一切
都成立的最小正整数
;
(3)设数列的前
和为
,
,试比较
与
的大小.