(本小题满分12分)
已知函数,
.
(1)设(其中
是
的导函数),求
的最大值;
(2)证明: 当时,求证:
;
(3)设,当
时,不等式
恒成立,求
的最大值.
已知,函数
(
R).
(1)求; (2)求
的最小正周期和最大值;
(3)若为锐角,且
,求
的值
已知直线及圆
(1) 若直线l与圆C相切,求a的值;
(2) 若直线l与圆C相交于A,B两点,且弦AB的长为,求a的值.
从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)估计成绩在[60,90)分的学生比例.
在直角坐标系中,点
到两点
、
的距离之和等于4,设点
的轨迹为曲线
,直线
与曲线
交于
、
两点.
(1)求出的方程;
(2)若=1,求
的面积;
(3)若OA⊥OB,求实数的值。
在⊿ABC中,BC=,AC=3,sinC="2sinA"
(I) 求AB的值:(II) 求sin的值