游客
题文

如图,在四棱锥中,底面
的中点.

(Ⅰ)求和平面所成的角的大小;
(Ⅱ)证明平面
(Ⅲ)求二面角的正弦值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

若某产品的直径长与标准值的差的绝对值不超过 1 m m 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取 5000 件进行检测,结果发现有 50 件不合格品。计算这 50 件不合格品的直径长与标准值的差(单位: m m ), 将所得数据分组,得到如下频率分布表:

分组
频数
频率
[-3, -2)

0.10
[-2, -1)
8

(1,2]

0.50
(2,3]
10

(3,4]


合计
50
1.00

(Ⅰ)将上面表格中缺少的数据填在相应位置;
(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。

设定义在( 0 , + )上的函数 f x = a x + 1 a x + b a > 0

(Ⅰ)求 f x 的最小值;
(Ⅱ)若曲线 y = f x 在点 1 , f 1 处的切线方程为 y = 3 2 x ,求 a , b 的值。

设△ A B C 的内角 A , B , C 所对边的长分别为 a , b , c ,且有 2 sin B cos A = sin A cos C + cos A sin C .

(Ⅰ)求角 A 的大小;
(Ⅱ)若 b = 2 , c = 1 , D B C 的中点,求 A D 的长.

若函数 h ( x ) 满足
(1) h ( 0 ) = 1 , h ( 1 ) = 0
(2)对任意 a [ 0 , 1 ] ,有 h ( h ( a ) ) = a
(3)在(0,1)上单调递减。则称 h ( x ) 为补函数。已知函数 h ( x ) = ( 1 - x p 1 + λ x p ) 1 p ( λ > - 1 , p > 0 ) .

(1)判函数 h ( x ) 是否为补函数,并证明你的结论;
(2)若存在 m [ 0 , 1 ] ,使得 h ( m ) = m ,若 m 是函数 h ( x ) 的中介元,记 p = 1 n ( n N * ) h ( x ) 的中介元为 x n ,且 S n = i = 1 n x i ,若对任意的 n N + ,都有 S n < 1 2 ,求 λ 的取值范围;
(3)当 λ = 0 x ( 0 , 1 ) 时,函数 y = h ( x ) 的图像总在直线 y = 1 - x 的上方,求P的取值范围。

已知三点 O ( 0 , 0 ) , A ( - 2 , 1 ) , B ( 2 , 1 ) ,曲线 C 上任意一点 M x , y 满足 M A + M B = O M · O A + O B + 2 .
(1)求曲线 C 的方程;
(2)动点 Q ( x 0 , y 0 ) ( - 2 x 0 2 ) 在曲线 C 上,曲线 C 在点 Q 处的切线为 1 ,问:是否存在定点 P 0 , t t < 0 ,使得 1 P A , P B 都不相交,交点分别为 D , E ,且 Q A B P D E 的面积之比是常数?若存在,求 t 的值。若不存在,说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号