(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元。设
为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值。
如图,已知抛物线的焦点为F,过F的直线交抛物线于M、N两点,其准线
与x轴交于K点.
(1)求证:KF平分∠MKN;
(2)O为坐标原点,直线MO、NO分别交准线于点P、Q,求的最小值.
已知函数,
.若函数
依次在
处取到极值.
(1)求的取值范围;
(2)若,求
的值.
如图,在平面四边形ABCD中,已知,
,现将四边形ABCD沿BD折起,使平面ABD
平面BDC,设点F为棱AD的中点.
(1)求证:DC平面ABC;
(2)求直线与平面ACD所成角的余弦值.
已知数列的前
项和为
,且
,数列
满足
,且
.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)设,求数列
的前
项和
.
中内角
的对边分别为
,已知
,
.
(1)求的值;(2)若
为
中点,且
的面积为
,求
的长度.