(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元。设
为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值。
(本小题满分13分)
在中,
,
.
(Ⅰ)求角;
(Ⅱ)设,求
的面积.
(本小题共14分)
在单调递增数列中,
,不等式
对任意
都成立.
(Ⅰ)求的取值范围;
(Ⅱ)判断数列能否为等比数列?说明理由;
(Ⅲ)设,
,求证:对任意的
,
.
(本小题共14分)
已知椭圆C:,左焦点
,且离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C交于不同的两点
(
不是左、右顶点),且以
为直径的圆经过椭圆C的右顶点A.求证:直线
过定点,并求出定点的坐标.
(本小题共13分)
已知函数(
).
(Ⅰ)求函数的单调区间;
(Ⅱ)函数的图像在
处的切线的斜率为
若函数
,在区间(1,3)上不是单调函数,求
的取值范围。
(本小题共13分)
数列{}中,
,
,且满足
(1)求数列的通项公式;
(2)设,求
.