游客
题文

为了更好地治理洋澜湖水质,保护环境,市治污公司决定购买10台,污水处理设备,现有A,B两种型号的设备,其中每台的价格,同处理污水量如下表:

 
A型
B型
价格(万元/台)
a
b
处理污水量(吨/月)
240
200

经调查:购买一台A型号设备比购买一台B型号设备多2万元,购买2台A型设备比购买3台B型号设备少6万元。
求a ,b的值
经预算:使治污公司购买污水处理设备的资金不超过105万元,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案。

科目 数学   题型 解答题   难度 中等
知识点: 含绝对值的一元一次不等式
登录免费查看答案和解析
相关试题

如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.

(1)求证:四边形EGFH是矩形;
(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.

已知如图,在平面直角坐标系中,直线轴、轴分别交于A,B两点,P是直线AB上一动点,⊙的半径为1.

(1)判断原点O与⊙的位置关系,并说明理由;
(2)当⊙过点B时,求⊙轴所截得的劣弧的长;
(3)当⊙轴相切时,求出切点的坐标.


如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.

(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.

已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m-5,2).
(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90º?若存在,求出m的取值范围;若不存在,请说明理由.
(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.

已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º.(1)求BD的长;(2)求图中阴影部分的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号