已知:如图①,正方形ABCD中,E为对角线BD上一点,
过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
(11·钦州).
如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C (0,4),顶点为.
(1)求抛物线的函数表达式;
(2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标.
(3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EF∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.
(11·钦州)
如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.
锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.
(1)求证:AC平分∠DAB;
(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);
(3)若CD=4,AC=4,求垂线段OE的长.
某校教学楼后面紧邻着一个山坡,坡上面是一块平地,如图所示,
,
,斜坡
长为26米,坡角
.为了减缓坡面防止山体滑坡,保障安全,学校决定对该斜坡进行改造,经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.
(1)求改造前坡顶到地面的距离
的长(精确到0.1米);
(2)如果改造时保持坡脚
不动,坡顶
沿
向左移11米到
点处,问这样改造能确保安全吗?
(参考数据:
,
,
,
,
)
(11·钦州)
某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2 000千克/亩、2 500千克/亩,收购单价分别是8元/千克、7元/千克.
(1)若该基地收获两种生姜的年总产量为68 000千克,求A、B两种生姜各种多少亩?
(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?
(11·钦州)
某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:频数分布表扇形统计图
组别 |
成绩 |
频数 |
A |
50≤x<60 |
3 |
B |
60≤x<80 |
m |
C |
70≤x<80 |
10 |
D |
80≤x<90 |
n |
E |
90≤x<100 |
15 |
(1)频数分布表中的m=_▲,n=_▲;
(2)样本中位数所在成绩的级别是_▲,扇形统计图中,E组所对应的扇形圆心角的度数是_▲;
(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?