游客
题文

有一座抛物线型拱桥,其水面宽为18米,拱顶离水面的距离为8米,货船在水面上的部分的横断面是矩形,如图建立平面直角坐标系.

(1)求此抛物线的解析式,并写出自变量的取值范围;
(2)如果限定的长为9米,的长不能超过多少米,才能使船通过拱桥?
(3)若设,请将矩形的面积用含的代数式表示,并指出的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题


已知O为坐标原点,抛物线轴相交于点,.与轴交于点C,且O,C两点之间的距离为3,,点A,C在直线上.
(1)求点C的坐标;
(2)当随着的增大而增大时,求自变量的取值范围;
(3)将抛物线向左平移个单位,记平移后随着的增大而增大的部分为P,直线向下平移n个单位,当平移后的直线与P有公共点时,求的最小值.

已知反比例函数的图象的一支位于第一象限.
(1)判断该函数图象的另一支所在的象限,并求的取值范围;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于轴对称,若的面积为6,求的值.

如图,过原点的直线与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA.
(1)四边形ABCD一定是 四边形;(直接填写结果)
(2)四边形ABCD可能是矩形吗?若可能,试求此时之间的关系式;若不可能,说明理由;
(3)设P(),Q()()是函数图象上的任意两点,,试判断的大小关系,并说明理由.

如图,直线经过点A(4,0),B(0,3).

(1)求直线的函数表达式;
(2)若圆M的半径为2,圆心M在轴上,当圆M与直线相切时,求点M的坐标.

如图1,关于的二次函数y=-+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上。
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2=3,若存在求出点F的坐标,若不存在请说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号