(本小题满分13分)有一批单放机原价为每台80元,两个商场均有销售,为了吸引顾客,两商场纷纷推出优惠政策。甲商场的优惠办法是:买一台减4元,买两台每台减8元,买三台每台减12元,......,依此类推,直到减到半价为止;乙商场的优惠办法是:一律7折。某单位欲为每位员工买一台单放机,问选择哪个商场购买比较划算?
箱中有3个黑球,6个白球,每个球被取到的概率相同,
箱中没有球.我们把从
箱中取1个球放入
箱中,然后在
箱中补上1个与取走的球完全相同的球,称为一次操作,这样进行三次操作.
(1)分别求箱中恰有1个、2个、3个白球的概率;
(2)从箱中一次取出2个球,记白球的个数为
,求
的分布列与数学期望.
△的三边为
,满足
.
(1)求的值;
(2)求的取值范围.
已知抛物线C:与椭圆
共焦点,
(Ⅰ)求的值和抛物线C的准线方程;
(Ⅱ)若P为抛物线C上位于轴下方的一点,直线
是抛物线C在点P处的切线,问是否存在平行于
的直线
与抛物线C交于不同的两点A,B,且使
?若存在,求出直线
的方程;若不存在,请说明理由.
已知函数.
(Ⅰ) 若函数在
处的切线方程为
,求实数
的值.
(Ⅱ)当时,不等式
恒成立,求实数
的取值范围.
如图,在三棱柱中,
,
,
,点
是
的中点,
.
(Ⅰ)求证:∥平面
;
(Ⅱ)设点在线段
上,
,且使直线
和平面
所成的角的正弦值为
,求
的值.