游客
题文

某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的圆盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动圆盘2次,所获得的返券金额是两次金额之和.
(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记
(元).求随机变量的分布列和数学期望.

科目 数学   题型 解答题   难度 容易
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

(本小题满分14分)如图,已知矩形ABCD的边AB="2" ,BC=,点E、F分别是边AB、CD的中点,沿AF、EC分别把三角形ADF和三角形EBC折起,使得点D和点B重合,记重合后的位置为点P。
(1)求证:平面PCE平面PCF;
(2)设M、N分别为棱PA、EC的中点,求直线MN与平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。

(本小题满分12分)某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为(),且不同种产品是否受欢迎相互独立。记为公司向市场投放三种新型产品受欢迎的数量,其分布列为


0
1
2
3





(1)求该公司至少有一种产品受欢迎的概率;
(2)求的值;
(3)求数学期望

(本小题满分12分)设,且满足
(1)求的值.(2)求的值.

已知函数.(为常数)
(1)当时,求函数的最小值;
(2)求函数上的最值;
(3)试证明对任意的都有

已知椭圆的离心率为,短轴的一个端点到右焦点的距离为2,
(1)试求椭圆的方程;
(2)若斜率为的直线与椭圆交于两点,点为椭圆上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号