某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的圆盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动圆盘2次,所获得的返券金额是两次金额之和.
(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记
为(元).求随机变量
的分布列和数学期望.
已知函数。
(I)当a=1时,求在区间[1,e]的最大值和最小值;
(II)若在区间上,函数
的图象总在直线
的下方,求a的取值范围。
设函数(1)当
时,求
的最大值;(2)令
,(0
≤3),其图象上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;(3)当
,
,方程
有唯一实数解,求正数
的值。
已知平面上的动点
及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是
,
,且
·
。(1)求动点P的轨迹C的方程;
(2)已知直线与曲线C交于M,N两点,且直线BM,BN的斜率都存在并满足
·
,求证:直线
过原点。
已知,等差数列的首项
,公差
,且第二项、第五项、第十四项分别是等比数列
的第二项、第三项、第四项。(1)求数列
的通项公式;(2)设数列
对任意正整数
均有
成立,求数列
的前
项的和
某校积极响应《全面健身条例》,把周五下午5:00~6:00定为职工活动时间,并成立了行政和教师两支篮球队,但由于工作性质所限,每月(假设为4周)每支球队只能组织两次活动,且两支球队的活动时间是相互独立的。
(1)求这两支球队每月两次都在同一时间活动的频率;
(2)设这两支球队每月能同时活动的次数为,求随机变量
的分布列和数学期望。