(本小题满分7分)选修4-2:矩阵与变换
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(Ⅰ)求矩阵M;
(Ⅱ)设直线在变换M作用下得到了直线m:2x-y=4,求
的方程
已知函数(
).
(I)若的定义域和值域均是
,求实数
的值;
(II)若在区间
上是减函数,且对任意的
,
,总有
,求实数
的取值范围.
设:函数
在
内单调递减;
:曲线
与
轴交于不同的两点.
(1)若为真且
为真,求
的取值范围;
(2)若与
中一个为真一个为假,求
的取值范围.
如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数
)的图象,且点M到边OA距离为
.
(1)当时,求直路
所在的直线方程;
(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?
已知函数
(1)求函数的单调区间;
(2)若函数的图像与直线
恰有两个交点,求
的取值范围.
如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱
上的一点,
.
(1)试确定m,使直线AP与平面BDD1B1所成角为60º;
(2)在线段上是否存在一个定点
,使得对任意的m,
⊥AP,并证明你的结论.