(14分)设是椭圆
的两点,
,
,且
,椭圆离心率
,短轴长为2,O为坐标原点。
(1) 求椭圆方程;
(2) 若存在斜率为的直线AB过椭圆的焦点
(
为半焦距),求
的值;
(3) 试问的面积是否为定值?若是,求出该定值;若不是,
说明理由。
(本小题满分12分)已知圆:
和定点
,由圆外一点
向圆
引切线
,切点为
,且满足
.
(1)求实数间满足的等量关系式;
(2)求面积的最小值;
(3)求的最大值。
(本小题满分12分)
已知椭圆的离心率
,过点
和
的直线与原点的距离为
。⑴求椭圆的方程;⑵已知定点
,若直线
与椭圆交于
两点,问:是否存在
的值,使以
为直径的圆过
点?请说明理由。
(本小题满分12分)一个四棱锥的直观图和三视图如图所示:
(1)求证:⊥
;
(2)求出这个几何体的体积。
(3)若在PC上有一点E,满足CE:EP=2:1,求证PA//平面BED。
已知直线与圆
的交点为A、B,
(1)求弦长AB;
(2)求过A、B两点且面积最小的圆的方程.
(本小题满分12分)
设函数(
为自然对数的底数),
(
).
(1)证明:;
(2)当时,比较
与
的大小,并说明理由;
(3)证明:(
).