(本小题满分12分)
如图,在底面为直角梯形的四棱锥中,
,
平面
,
,
(1) 求证:平面
;
(2) 求二面角的大小.
等差数列的各项均为正数,
,前
项和为
,
为等比数列,
,
且.
(Ⅰ)求与
;
(Ⅱ)求和:.
袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
已知一圆经过点A(2,-3)和B(-2,-5),且圆心C在直线l:,此圆的标准方程.
设函数f(x)=4x3+ax2+bx+5在x=与x=-1时有极值.
(1)写出函数的解析式;
(2)指出函数的单调区间;
(3)求f(x)在[-1,2]上的最大值和最小值.
从参加高一年级迎新数学竞赛的学生中,随机抽取了名学生的成绩进行统计分析.
(1)完成下列频率分布表,并画出频率分布直方图;
(2)从成绩是[50,60)和[90,100)的学生中选两人,求他们在同一分数段的概率.
分 组 |
频数 |
频率 |
![]() |
2 |
|
![]() |
10 |
|
![]() |
20 |
|
![]() |
15 |
|
![]() |
3 |
|
合计 |
50 |