(本小题满分12分)已知数列的前n项和为 (n∈N*),且.数列满足,,,n=2,3,….(Ⅰ)求数列 的通项公式;(Ⅱ)求数列 的通项公式;(Ⅲ)证明:对于 ,.
已知函数. (1)若时,取得极值,求实数的值; (2)求在上的最小值; (3)若对任意,直线都不是曲线的切线,求实数的取值范围.
(1)经计算发现:, 试写出一个使成立的正实数满足的条件,并给出证明; (2)若不等式对任意的正实数恒成立, 求实数的取值范围.
已知数列,其前项和为. (Ⅰ)求; (Ⅱ)猜想的表达式,并给出证明.
设. (1)求 | z1| 的值以及z1的实部的取值范围; (2)若,求证:为纯虚数.
(1)已知,求证:; (2)已知,>0(i=1,2,3,…,3n),求证:+++…+
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号