(本题8分)一个实验室在0:00—2:00保持20℃的恒温,在2:00—4:00匀速升温,每小时升高5℃,写出时间t(单位:时)与实验室温度T(单位:℃)之间的函数解析式,并画出图象。
(本小题满分6分)
小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字。若两次数字之和大于5,则小颖胜,否则小丽胜。这个游戏对双方公平吗?请说明理由。
(本小题满分6分)某小学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:
(1)补全条形统计图;
(2)求扇形统计图中扇形D的圆心角的度数;
(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?
(本小题满分8分,每题4分)
(1)化简:;
(2)关于的一元二次方程
有两个不相等的实数根,求
的取值范围
已知:线段,直线
外一点A.
求作:Rt△ABC,使直角边为AC(AC⊥,垂足为C)斜边AB=c.
如图,在平面直角坐标系中,已知抛物线交
轴于
两点,交
轴于点
.
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交
轴于点E、F两点,求劣弧
的长;
(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.