.八年级数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:
月用水量(吨) |
3 |
4 |
5 |
7 |
8 |
9 |
10 |
户数 |
4 |
3 |
5 |
11 |
4 |
2 |
1 |
(1)求这30户家庭月用水量的平均数、众数和中位数;
(2)根据上述数据,试估计该社区的月用水量;
(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m(吨)的部分加倍收费。你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由。
四边形ABCD是平行四边形,E是对角线AC上一点,射线DE分别交射线CB、AB于点F、G.
(1)如图,如果点F在CB边上,点G在AB边的延长线上,求证:;
(2)如果点F在CB边的延长线上,点G在AB边上,试写出与
之间的一种等量关系,并给出证明.
如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(2)当QP⊥AB时,△QCP的形状是 三角形;
(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是 三角形.
如图在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求点M的坐标;
(2)若反比例函数 y=(x>0)的图象经过点M,通过计算判断点N是否在该函数的图象上;
(3)在(2)的条件下观察图形,当x取何值时,一次函数值小于反比例函数值.
如图(1),格点△ABC(顶点在小正方形的顶点处的三角形称为格点三角形),请在图(2)、(3)、(4)中的6×6的网格中各画一个互不全等的格点三角形,使它们都和△ABC相似.
要求:①其中有一个相似比为;②其中有一个面积为5.
已知O是平面直角坐标系的原点,点A(1,n),B(﹣1,﹣n)(n>0),AB的长是,若点C在x轴上,且OC=AC,求点C的坐标.