如图,抛物线与
轴交于
两点,与
轴相交于点
.连结AC、BC,B、C两点的坐标分别为B(1,0)、
,且当x=-10和x=8时函数的值
相等.
求a、b、c的值;
若点
同时从
点出发,均以每秒1个单位长度的速度分别沿
边运动,其中一个点到达终点时,另一点也随之停止运动.连结
,将
沿
翻折,当运动时间为几秒时,
点恰好落在
边上的
处?并求点
的坐标及四边形
的面积;
上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D,对称轴与x轴的交点为E,若△ODE与△OBC相似,求新抛物线的解析式。
一元二次方程的二根
(
)
是抛物线与
轴的两个交点
的横坐标,
且此抛物线过点.
(1)求此二次函数的解析式.
(2)用配方法求此抛物线的顶点为
.对称轴
(3)当x取什么值时, y随x增大而减小?
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量
(箱)与销售价
(元
/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润
(元)与销售价
(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
如图,一次函数的图象与反比例函数
图象交于A(-2,1)、B(1,n)两点。
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围。
矩形的长和宽分别是4cm, 3cm ,如果将长和宽都增加x cm ,那么面积增加ycm(1)求y与x之间的关系式.
(2)求当边长增加多少时,面积增加8 cm