(本小题满分12分)设函数.
(1)判断函数的奇偶性,并写出
时
的单调增区间;
(2)若方程有解,求实数
的取值范围.
从极点作直线与
另一直线
相交于点
,在
上取一点
,使
16
⑴ 求点的轨迹方程;
(2) 圆的方程为
,过圆
上任意一点
作
的轨迹的两条切线
,
切点分别为
,
的最小值。
、已知直线.
(1) 当时,求
与
的交点;
(2)设曲线经过伸缩变换
得到曲线
,设曲线
上任一点为
,
恒成立,求
的取值范围。
、某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天100颗种子的发芽数,如下
日期 |
12月1日 |
12月2日 |
12月3日 |
12月4日 |
12月5日 |
温差![]() |
10 |
11 |
13 |
12 |
8 |
发芽数![]() |
23 |
25 |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这五组数据中选取两组,用剩下的3组数据求线性回归方程,再用被选取点2组数据进行检验
(1)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求关于
的线性回归方程
;
(2)若线性回归方程得到的估计数据与所选点检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得到的线性回归方程是否可靠?
参考公式:,
甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:
优秀 |
非优![]() |
总计 |
|
甲班 |
10 |
||
乙班 |
30 |
||
合计 |
105 |
已知在全部105人中随机抽取1人为优
秀的概率为
。
(1)请完成上面的列联表;(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”。
参考公式:
![]() |
0.25 |
0.15 |
0.![]() |
0.05 |
0.025 |
0.010 |
![]() |
1![]() |
2.072 |
2.706 |
3.841 |
5.0![]() |
6.635 |