(本小题满分12分)在某次测验中,有6位同学的平均成绩为75分。用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n |
1 |
2 |
3 |
4 |
5 |
成绩xn |
70 |
76 |
72 |
70 |
72 |
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。
某班同学利用国庆节进行社会实践,对岁的人群随机抽取
人
进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,
否则称为“非低碳族”,得到如下
统计表和各年龄段人数频率分布直方图:
(1)补全频率分布直方图并求、
、
的值;
(2)从岁年龄段的“低碳族”中采用分层抽样法抽取
人参加户外低碳体验活动,其中选取
人作为领队,记选取的
名领队中年龄在
岁的人数为
,求
的分布列和期望
.
设,其中
.
(1)当时,求
的极值点;
(2)若为R上的单调函数,求
的取值范围.
如图,四棱锥P—ABCD中,底面ABCD为平行四边形,
∠DAB=60°,AB=2AD=2,PD⊥底面ABCD.
(1)证明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值.
成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13
后成为等比数列中的
、
、
.
(1)求数列的通项公式;
(2)数列的前n项和为
,求证:数列
是等比数列.
已知函数.
(1)求的最小正周期;
(2)求在区间
上的最大值和最小值.