一座拱型桥,桥下水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF是多少?若把它看作是抛物线的一部分,在坐标系中(如图1)可设抛物线的表达式为.请你填空:a= ,c= ,EF= 米.若把它看作是圆的一部分,则可构造图形(如图2)计算如下:设圆的半径是r米,在Rt△OCB中,易知,r=14.5同理,当水面上升3米至EF,在Rt△OGF中可计算出GF= 米,即水面宽度EF= 米.
(1)设a-b=4,a2+b2=10,求(a+b)2的值; (2)观察下列式子:1×3+1=4,2×4+1=9,3×5+1=16,4×6+1=25,…, 探索以上式子的规律,试写出第n个等式,并说明第n个等式成立.
化简: (1)(-2x2y)2·(-xy)-(-x3)3÷x4·y3; (2)(a2+3)(a-2)-a(a2-2a-2).
解方程组: (1)(2)
如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数.
因式分解: (1);(2).
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号