12分)某工厂对200个电子元件的使用寿命进行检查,按照使用寿命(单位:h),可以把这批电子元件分成第一组[100,200],第二组(200,300],第三组(300,400],第四组(400,500],第五组(500,600],第六组(600,700].由于工作中不慎将部分数据丢失,现有以下部分图表:
分组 |
[100,200] |
(200,300] |
(300,400] |
(400,500] |
(500,600] |
(600,700] |
频数 |
B |
30 |
E |
F |
20 |
H |
频率 |
C |
D |
0.2 |
0.4 |
G |
I |
(1)求图2中的A及表格中的B,C,D,E,F,G,H,I的值;
(2)求图2中阴影部分的面积;
(3)若电子元件的使用时间超过300h为合格产品,求这批电子元件合格的概率.
在△ABC中,分别为角A、B、C的对边,
=3,△ABC的面积为6,
,D为△ABC内任一点,点D到三边距离之和为
。
(1)求:角A的正弦值;
(2)求:边;
(3)求:的取值范围
已知正项等差数列的前
项和为
,若
,且
成等比数列.
(Ⅰ)求的通项公式;
(Ⅱ)记的前
项和为
,求
.
如图,设是单位圆和
轴正半轴的交点,
是单位圆上的两点,
是坐标原点,
,
.
(1)若,求
的值;
(2)设函数,求
的值域.
在等比数列{}中,
,公比
,且
,
与
的等比中项为2.
(1)求数列{}的通项公式;
(2)设,求:数列{
}的前
项和为
,
设函数,
.
(1)当时,函数
取得极值,求
的值;
(2)当时,求函数
在区间[1,2]上的最大值;
(3)当时,关于
的方程
有唯一实数解,求实数
的值.