某班级共派出个男生和
个女生参加学校运动会的入场仪式,其中男生甲为领队.入场时,领队男生甲必须排第一个,然后女生整体在男生的前面,排成一路纵队入场,共有
种排法;入场后,又需从男生(含男生甲)和女生中各选一名代表到主席台服务,共有
种选法.
(1)试求和
;
(2)判断和
的大小(
),并用数学归纳法证明.
已知函数f(x)=-x2+2ex+m-1,g(x)=x+(x>0).
(1)若g(x)=m有零点,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x).
(1)求f(2 012)的值;
(2)求证:函数f(x)的图像关于直线x=2对称;
(3)若f(x)在区间[0,2]上是增函数,试比较f(-25),f(11),f(80)的大小.
已知函数f(x)=x2+(x≠0,a∈R).
(1)判断函数f(x)的奇偶性;
(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.
已知二次函数f(x)满足条件f(0)=1,f(x+1)-f(x)=2x.
(1)求f(x);
(2)求f(x)在区间[-1,1]上的最大值和最小值.
设A,B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的只数多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B有效的概率为
.
(1)求一个试验组为甲类组的概率;
(2)观察三个试验组,用X表示这三个试验组中甲类组的个数,求X的分布列和数学期望.