从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:
观察图形,回答下列问题:
(1)79.5~89.5这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率(60分以上为及格)。
(本小题满分10分)【选修4-4:坐标系与参数方程】
在平面直角坐标系xOy中,已知曲线C:
为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:
=6.
(1)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值;
(2)过点M(一1,0)且与直线l平行的直线l1交C于A, B两点,求点M到A,B两点的距离之积.
(本小题满分10分)【选修4一1:几何证明选讲】
如图,已知圆的两条弦AB, CD,延长AB,CD交于圆外一点E,过E作AD的平行线交CB的延长线于F,过点F作圆的切线FG,G为切点.求证:
(1)△EFC∽△BFE;
(2)FG=FE
(本小题满分12分)已知f(x)=
。
(1)曲线
在点(1,f(1))处的切线斜率为0,求f(x)的单调区间;
(2)若f(x)<x2在(1,+
)恒成立,求a的取值范围。
(本小题满分12分)已知椭圆C:
的离心率为
,连接椭圆四个顶点形成的四边形面积为4
.
(1)求椭圆C的标准方程;
(2)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且
O为坐标原点,当
时,求t的取值范围.
(本小题满分12分)如图,在三棱锥S -ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA=SC=
,M为AB的中点.
(1)证明:AC⊥SB;
(2)求点B到平面SCM的距离。