(本小题满分12分)
已知椭圆、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲线上各取两个点,将其坐标记录于下表中:
![]() |
3 |
![]() |
4 |
![]() |
![]() |
![]() |
0 |
![]() |
![]() |
⑴求的标准方程;
⑵是否存在直线满足条件:①过
的焦点
;②与
交不同两点
且满足
?若存在,求出直线
的方程;若不存在,说明理由.
设 ,且曲线 在 处的切线与x轴平行。
(Ⅰ)求 的值,并讨论 的单调性;
(Ⅱ)证明:当
某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:
(Ⅰ)试分别估计两个分厂生产的零件的优质品率;
(Ⅱ)由于以上统计数据填下面 列联表,并问是否有99%的把握认为"两个分厂生产的零件的质量有差异"。
附:
如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。
(Ⅰ)若 , ,求直线MN的长;
(Ⅱ)用反证法证明:直线ME与BN是两条异面直线。
如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为 , ,于水面C处测得B点和D点的仰角均为 ,AC=0.1km。试探究图中B,D间距离与另外哪两点距离相等,然后求B,D的距离(计算结果精确到0.01km, 1.414, 2.449)
等比数列 的前n 项和为 ,已知 , , 成等差数列
(1)求 的公比 ;
(2)求
求